Real-time PCR assays targeting a unique chromosomal sequence of Yersinia pestis.
نویسندگان
چکیده
BACKGROUND Yersinia pestis, the causative agent of the zoonotic infection plague, is a major concern as a potential bioweapon. Current real-time PCR assays used for Y. pestis detection are based on plasmid targets, some of which may generate false-positive results. METHODS Using the yp48 gene of Y. pestis, we designed and tested 2 real-time TaqMan minor groove binder (MGB) assays that allowed us to use chromosomal genes as both confirmatory and differential targets for Y. pestis. We also designed several additional assays using both Simple-Probe and MGB Eclipse probe technologies for the selective differentiation of Yersinia pseudotuberculosis from Y. pestis. These assays were designed around a 25-bp insertion site recently identified within the yp48 gene of Y. pseudotuberculosis. RESULTS The Y. pestis-specific assay distinguished this bacterium from other Yersinia species but had unacceptable low-level detection of Y. pseudotuberculosis, a closely related species. Simple-Probe and MGB Eclipse probes specific for the 25-bp insertion detected only Y. pseudotuberculosis DNA. Probes that spanned the deletion site detected both Y. pestis and Y. pseudotuberculosis DNA, and the 2 species were clearly differentiated by a post-PCR melting temperature (Tm) analysis. The Simple-Probe assay produced an almost 7 degrees C Tm difference and the MGB Eclipse probe a slightly more than 4 degrees C difference. CONCLUSIONS Our method clearly discriminates Y. pestis DNA from all other Yersinia species tested and from the closely related Y. pseudotuberculosis. These chromosomal assays are important both to verify the presence of Y. pestis based on a chromosomal target and to easily distinguish it from Y. pseudotuberculosis.
منابع مشابه
Application of chromosomal DNA and protein targeting for the identification of Yersinia pestis.
PURPOSE A comprehensive strategy was developed and validated for the identification of pathogens from closely related near neighbors using both chromosomal and protein biomarkers, with emphasis on distinguishing Yersinia pestis from the ancestral bacterium Yersinia pseudotuberculosis. EXPERIMENTAL DESIGN Computational analysis was used to discover chromosomal targets unique to Y. pestis. Locu...
متن کاملAmbient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis
BACKGROUND Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detect...
متن کاملThe molecular detection of the causative agent of plague on the basis of the pla gene
Yersinia pestis, a gram-negative rod belonging to the Enterobacteriaceae family, is the causative agent of plague. Classical methods of detecting the organisms are time-consuming, expensive and dangerous. The aim of the study was to design a Real-time PCR assay on the basis of the pla gene of Yersinia pestis. In this research the Real- time PCR test was optimized by using special primers for ta...
متن کاملIdentification of nucleotide sequences for the specific and rapid detection of Yersinia pestis.
Suppression subtractive hybridization, a cost-effective approach for targeting unique DNA, was used to identify a 41.7-kb Yersinia pestis-specific region. One primer pair designed from this region amplified PCR products from natural isolates of Y. pestis and produced no false positives for near neighbors, an important criterion for unambiguous bacterial identification.
متن کاملMolecular detection and analysis of Y. pestis
The polymerase chain reaction (PCR) has been used to detect Y. pestis in infected fleas, soil samples, and clinical samples for rapid diagnosis of plague. PCR-gradient density electrophoresis (PCR-GDE) has allowed the distinction between the three pathogenic Yersinia species utilizing the rpoB gene. The application of the PCR to dental samples has allowed the confirmation of Y. pestis as the ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 51 10 شماره
صفحات -
تاریخ انتشار 2005